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tasks, which results in considerable CPU time savings. This
method is based on selectively limiting the calculation ofA method of optimizing molecular dynamics calculations is pre-

sented. The method employs multiple time steps across the compu- the forces and the neighbor list updating, according to
tational crystal both for the force evaluation and the neighbor list actual need. In Section II we discuss the details of an
updating. The time step for each individual atom is chosen ac- optimized scheme of the force evaluation using a multiplecording to general criteria which reproduce overall accuracy while

time step method. Section III reviews methods of neighborsaving CPU time. A detailed application is presented to demonstrate
list calculation and describes the selective updating ofthe reduction in computation time and the reproducibility of the

results. Q 1996 Academic Press, Inc. atoms in the crystal. In Section IV the implementation of
this method in real MD calculations is illustrated. The
relevant conclusions are summarized and discussed in Sec-

I. INTRODUCTION tion V, and further improvements and applications are in-
dicated.

Molecular dynamics (MD) calculations are widely used
in physics and chemistry. One of the most successful sub- II. MULTIPLE TIME STEP METHOD
jects studied with MD is the process of irradiation damage
[1], where its potential for providing fundamental under- This section describes the method of using multiple time
standing was recognized from the outset. In recent years steps in the same computational crystal. We propose to
there is a growing interest in studying irradiation damage use this method for simulations of systems with very inho-
caused by particles of increasingly higher energy [2–6]. mogeneous velocity (or kinetic energy) distributions, which
Due to the high energy processes involved (resulting from are typical to high energy irradiation processes. This
particle initial kinetic energies of from 500 eV up to 30 method is based on a simple observation. When a cascade
keV) large computational crystals have to be used, with is generated in a large crystal (with, say, 106–107 atoms)
Natom Q 105 2 106. The need to follow the evolution of by a primary energetic particle (with kinetic energy in
large numbers of particles for long physical times, has excess of 10 keV) most of the energetic atoms are concen-
prompted interest in developing qualitative new algorithms trated in a small region of the crystal, while a vast majority
to speed up the calculation [7]. of the atoms are hardly affected by the event. Following

A standard MD calculation can be divided into two main the motion of the fast atoms requires a time step which is
parts for every time step. The first part is the calculation much shorter than that necessary to describe accurately
of the force acting on each atom. This entails the use of a the much slower atoms. By allowing, in principle, each
neighbor list, namely a list which contains the identity of atom to be assigned an appropriate, individual time step,
all neighbor atoms contributing to that force. The second a significant saving of CPU time can be achieved, without
part is the advancing of the atomic coordinates by integ- impairing the accuracy of the calculation. In so doing, one
rating Newton’s equations. The neighbor list itself has to dispenses with the need to calculate too frequently the
be updated periodically to take into account the motion force acting on most atoms.
of the atoms. This is done usually at constant time intervals, There are several common ways to integrate Newton’s
whose magnitude depends on the specific physical equations [8, 9]. We use the Verlet method [10], whereby
problem. the positions of the atoms xi are computed for every time

Calculating the forces and managing the neighbor list are step (Dt) through:
the two most time consuming phases of the computation,
particularly when the number of particles exceeds 104. In xi(t 1 Dt) 5 2xi(t) 2 xi(t 2 Dt) 1

Dt2

Mi
O
j?i

Fij(t), (1)
this paper we introduce a new method of performing these
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where xi(t 1 Dt) is the atomic position at the time t 1 Dt, 3. The difference between the group indices of neigh-
boring atoms has to be less than or equal to 1 : uk(i) 2Mi the mass of atom i, and Fij is the force exerted by atom

j on the atom i. In the standard MD the value of the time k( j)u # 1. This provides for the smoothness of the spatial
variation of k(i).step Dt is usually constant for all atoms i independently of

their kinetic energy. The evaluation of the force Fij , which
It is important to note that these criteria could dependis the most time consuming part of the calculation, is done

on the details of the simulated system and might be modi-normally at every time step.
fied as experience in actual computations is accumulated.In the present model we introduce the use of multiple
They do, however, address the two basic issues in the newtime steps with values determined for each atom by its
scheme: the limitation placed on atomic motion in a singleenergy. Thus, the atoms in the crystal are divided into
time step and the need to avoid drastic spatial and temporalgroups characterized by their energy range and, conse-
changes of the variable time step. They also adjust auto-quently, by their common time increment. We limit the
matically the range of sizes of time steps to the rate ofacceptable time increment to the set hDtj,
change of system variables and, hence, to a constant level
of obtained accuracy of the calculation.

Dt [ h20 Dt0 , 21 Dt0 , 22 Dt0 , ..., 2k Dt0 , ..., 2kmax Dt0j, (2)

Integration of the Equations of Motion by Group
namely, to a set of successive multiples of 2 of some Dt0 ,

The unmodified scheme employed in the molecular dy-which is the time step corresponding to the most energetic
namics calculation is an explicit scheme, in which all atomsatom in the crystal. This is done both for reasons of practi-
can be advanced in time independently of each other. Incal convenience and in order to provide a natural frame-
the multiple time step method one has to modify thework for keeping the difference equations centered in time.
scheme (Eq. (1)) whenever an atom changes its characteris-The largest time step, 2kmax Dt0 , corresponds to the lowest
tic time step and to organize properly the order of integra-kinetic energy of the atoms in the system which is normally
tion among the various time groups.the thermal energy. Since at that time the entities corre-

Let the characteristic time step of atom i change fromsponding to all the atoms are computed, it will be called
Dtold to Dtnew at time t. Expanding the position to secondthe synchronization time. kmax is normally 5 or 6, in practice,
order and the velocity to first order around t one readilydepending to the initial energy of the primary knock-on
obtains the modified relationshipatom.

Division of Atoms into Groups xi(t 1 Dtnew) 5 2xi(t) 2 xi(t 2 Dtold)
(4)As we have indicated, the atoms in the crystal are divided

1
1/2(Dt2

new 1 Dt2
old)

Mi
O
j?i

Fij(t).into groups. Each group is characterized by its own Dt
(limited to the specific set above) and the corresponding
frequency with which the force on its member atoms is A simple technical alternative for implementing the
calculated. How are these groups constructed and how are scheme modification is to integrate the equations of motion
they dynamically maintained throughout the calculation? for all atoms using the smallest time increment Dt0 , but to

Three criteria are used in assigning the atoms to groups: hold constant the force acting on each atom for the dura-
tion of its own characteristic Dt. This alternative, which1. The basic and most important criterion is the re-
was found to yield quantitatively equivalent results, repro-quirement that an atom does not move more than a certain,
duces in most respects the approach of Zhu and Aver-predetermined distance DXconst during its characteristic Dt.
back [7].This immediately defines the groups of atoms through

It is useful, nonetheless, to indicate the general integra-
tion-by-group algorithm which can be utilized because it

k(i) 5 Flog2
DXconst/v(i)

Dt0
G , (3) conserves the formal structure of the Verlet method. More-

over, it is applicable to a more general class of multiple
time step schemes, where the groups are characterized not

where v(i) is the velocity and k(i) is the index defining Dt just by their different time step, but by some additional
(in the time increment list) for the atom i. intrinsic properties.

To advance (the coordinates of) an atom from time t to2. For each atom i the difference uk(i) 2 k9(i)u has to be
less than or equal to 1, where k9(i) is the index of time step time t 1 Dt one has to know the force acting on it at time

t and, hence, the coordinates of all its neighbors at thatof the atom i at the previous synchronization time. This
ensures a measure of smoothness in the variation of k(i) time. At the synchronization time, and only then, by defini-

tion, all atomic coordinates are known concurrently, andwith time.
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all atoms can thus be simultaneously advanced. At interme- time by a factor of 2 is only a minor improvement from
this point of view.diate stages between consecutive synchronization times,

The standard link-cell method is primarily designed tothe simple operational rule is: advance first the currently
reduce the order of dependence of the neighbor list calcula-most retarded atoms. At time t, according to this rule, the
tion time on Natom . Its basic idea is to divide the crystal intoneighbors of any given atom that is being advanced, have
cubic subcells, whose size is determined by the interactionalready been advanced themselves either to t or further
cutoff radius Rc . Updating the neighbor list involves twoon. In the latter case, their position at time t is obtained by
steps: first, assigning each atom to its corresponding subcellinterpolation between their current and previous positions.
according to its current geometric position; second, de-This can be either a linear, or—optionally—a higher or-
termining the neighbor list for a given atom i. In so doingder interpolation.
the check is limited to atoms in its own subcell and toIt is instructive to understand the formal implications of
atoms in geometrically adjacent subcells. Clearly, for sys-using the scheme as presented, and—in particular—the
tems whose size is much larger than the cutoff radius Rc ,limitations which consequently hold in practice. The Verlet
the calculation time Tlist becomes proportional to Natom ,algorithm, when applied to motion governed by a conserva-
with the proportionality constant, depending primarily ontive force, is fully reversible and preserves rigorously the
the number of atoms per subcell.phase space volume at each time step [11]. It was shown

Before proceeding with the discussion of the optimiza-[12] that for such algorithms and for an appropriate finite
tion scheme, we introduce a new variant of the standardtime step range, one can define an effective pseudo-hamil-
link-cell method. We call it the relational method becausetonian (with an associated conservation law) for the contin-
it uses directly the neighbor relationship between atomsuous-time evolution which is equivalent to the time-discret-
(rather than their relative geometric position) in updatingized dynamics. This ensures the stability of the algorithm
the neighbor list. Unlike the standard link-cell method,

and its robustness over long time spans, without the
which can be used to construct the neighbor list directly

buildup of random, uncontrollable errors that might other- from the ensemble of atomic data, the relational method
wise occur [13]. The algorithm which we used is not strictly is a recursive algorithm that uses the current neighbor list
reversible and thus must be integrated over long times at time t 2 Dt to create the neighbor list at time t. It is
with caution. Rigorous (in the above sense) multiple time based on the simple observation that, in a simply connected
step methods based on the Verlet algorithms have been domain, one atom cannot become a neighbor of (i.e., get
formally devised [14]. However, we have limited our study close enough to) another, unless there is, at some earlier
to the simple intuitive multiple time step algorithm for a stage, some atom which is a neighbor of both. Thus, to
number of reasons. First, jumps in the time step size (which update the neighbor list, one has to check for each atom
are the source of the irreversibility of the algorithm) i only its current neighbors (‘‘first-order neighbors’’) and
amount to a small fraction, around 1% of the overall inte- the current neighbors of them (‘‘second-order neighbors’’).
gration. Second, the total time span of the integration is This effectively limits the check to an approximately spher-
limited by natural physical considerations—the dissipation ical region around the atom i, whose radius is 2Rc . The
of the initial cascade and its containment in the basic peri- calculation time of the neighbor list can be estimated by
odic crystal—so that runaway errors are not encountered.

Tlist p Natom ? (Nfn 1 Nsn), (5)
III. NEIGHBOR LIST MANAGEMENT

where Nfn , Nsn are the numbers of first- and second-order
neighbors, respectively. For an f.c.c. lattice, with the com-In the previous section we introduced an optimized way

of calculating the trajectories of the atoms. In this section monly used interaction cutoff radius, one has Nfn Q 50
and Nsn Q 23. Nfn . We recall that because of its inherentwe extend the same approach to the management of the

neighbor list. We begin with a discussion of the standard recursive nature, an alternative method has to be used in
order to initialize the neighbor list.neighbor list methods (Verlet and link-cell [15]) as well as

of a new method which we call the relational method. The neighbor list must represent fully and accurately
the system state at all times. In principle, therefore, itIn the Verlet method one calculates for each atom its

distance from all the other (Natom 2 1) atoms. All atoms should be updated every time step. This, however, is not
only too time consuming, but it is also unnecessary underwithin a sphere of radius Rc (the interaction cutoff radius)

around a particular atom are then assigned to the neighbor most ordinary circumstances. Consequently, the common
practice in MD calculations is to update the neighbor listlist of that atom. Clearly, the time required for computing

the complete neighbor list, Tlist, grows as N2
atom , and be- once every predetermined number of time steps. This is a

compromise between the need to preserve overall accuracycomes prohibitively large for very high Natom . Using the
symmetry of the forces, Fij 5 Fji , to cut the calculation and the wish to save CPU time.



88 GLIKMAN ET AL.

Applying the arguments used in connection with the IV. NUMERICAL EXAMPLE
multiple time step method, it is clear that there is no need

In this section we describe a MD calculation (on a copperto update the neighbor list of low energy atoms as fre-
crystal) which serves as a testing ground for the methodsquently as one updates the neighbor list of high energy
presented in the previous sections. The testing procedureatoms. The proposed optimization consists of updating the
consists of an ensemble of calculations with variable opera-neighbor list of each atom as frequently as required by its
tional parameters, carried out both before and after theown individual conditions. This will result in considerable
optimization methods are applied. The corresponding runstime saving, because there are many more low energy
are then compared to determine the relative gain in CPUatoms than high energy atoms in the crystal at all times.
time and to check for the reproducibility of the results.Quantitative criteria are needed in order to select at

This application is the one originally employed for cas-each time step the atoms whose neighbor list is to be
cade calculations in copper [17] and adapted for treatmentupdated, or ‘‘refreshed.’’ Again, as in the corresponding
on nuclear stimulated desorption in palladium [18]. Thecriteria for the multiple time step method, case-specific
computational crystal is an f.c.c. structure; for a detailedconsiderations may have to be applied. In practice, we
description of the technical aspects related to its construc-have tried two different alternatives for controlling this
tion see Ref. [17]. The interaction between the atoms ispartial neighbor list updating.
described by an empirical many-body potential derived

i. In the first option one updates the neighbor list every from a second-moment approximation to the tight-binding
time step for atoms whose kinetic energy is higher then scheme of electronic density of states [19]. The total cohe-
some threshold every Ethresh . Ethresh depends on the basic sive energy is written as the sum of an attractive term
time step size (which is a constant of the problem) and representing the tight-binding band energy due to the d-
the maximum kinetic energy of a crystal atom. In order electrons and a pairwise repulsive interaction term of the
to take into account neighbor list modifications resulting Born–Mayer type,
from low energy and thermal motion of the atoms over
extended time intervals, the full neighbor list is updated pe- Ecoh 5 O

i
(E A

i 1 E R
i ) (8)

riodically.

ii. In the second option [16], one monitors for each
withatom the distance between its current position and its posi-

tion at the last time its neighbor list was updated. Whenever
the total displacement exceeds, for a given atom, some

E A
i 5 2 FO

i?j
j 2 exp F22q Srij

r0
2 1DGG1/2

(9)prescribed value DR, this atom’s neighbor list is refreshed.
DR is a function of the time step size and the interaction
cutoff radius Rc and has to be properly adjusted. Note

E R
i 5 O

i?j
A exp F2p Srij

r0
2 1DG , (10)that under this option there is much less need to perform

periodic recalculations of the full neighbor list.

where j is a hopping integral between nearest neighborThe running time required to manage the neighbor list
sites, rij is the distance between atoms i and j, and r0 is thewas substantially reduced under both options and for both
nearest neighbor distance.relevant methods (link-cell and relational). This is because

The interaction parameters for copper areit behaves as

A 5 0.0905 eV, j 5 1.243 eV, p 5 10.68, q 5 2.32.Tlist p Nhigh ? (Nfn 1 Nsn), (6)
(11)

where Nhigh is the number of atoms whose energy exceeds
Periodic boundary conditions are applied with a periodthe threshold energy (or, alternatively, have been displaced
equal to the microcrystallite size. Boundary effects do notmore than DR) and
perturb significantly the results, because of the short time
of the cascade simulation (about 10212–10211 s) and the

Nhigh ! Natom . (7) short-range nature of the interaction.
The trajectories of the atoms in the microcrystallite were

determined by the numerical solution of Newton’s equa-Finally, we note that the major objective of this treat-
ment is not to reduce Tlist (which is, anyway, much smaller tions of motion. The total force Fi exerted on an atom i of

mass mi contains contributions from all the atoms locatedthan the force calculation time), but to put both phases of
the MD calculation on a conceptually equivalent basis. within a sphere of a prescribed cutoff radius around it,
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Fi 5 2O
j?i

=ri
Ecoh . (12)

Starting from a given equilibrium configuration, one spe-
cific atom in a predetermined site is given an initial kinetic
energy. The resultant cascade is then followed in phase
space for a sufficiently long physical time, typically until
the number of induced defects has reached its asymptotic
value. Each run was characterized by the dimensions of
the crystal, the position of the primary energetic atom, its
initial energy Einit , and its direction. The basic minimal
time step Dt0 was taken universally as 1 3 10216 s, while
the maximal time group index, kmax , as defined in Eq. (2),
was allowed to vary. The total energy, the kinetic energy,
and the number of displaced atoms were monitored
throughout the calculation, as well as entities related spe-
cifically to the optimizing scheme. In particular, the total
number of atoms in each time group, Nk , was followed
and recorded.

The treatment of the neighbor list, performed in con-
FIG. 1. The time dependence of Nk for a run with Natom 5 18000,

junction with these calculations, was the following. At ev- Einit 5 500 eV and kmax 5 3. The lowest group is advanced with Dt 5 1
ery synchronization time a partial ‘‘refreshment’’ of the 3 10216s and the highest group with Dt 5 8 3 10216s. Note the predomi-

nance of the higher groups during the entire run. The abrupt fluctuationsneighbor list was carried out while every five synchroniza-
in Nk stem from the use of a ‘‘hard’’ criterion for the time increment as-tion time steps a full updating (using the link-cell method)
signment.was performed. We note that this occasional full updating

is not really necessary and could be done with a lower fre-
quency.

A cascade event transforms kinetic energy, concentratedWe present results obtained for a cascade generated by
initially on one atom, into crystalline heat and disorderingan atom with Einit 5 500 eV in a crystal with 18000 atoms.
energy. This disordering manifests itself in the form ofThe crystal was initially at a temperature of 208K, and the
atoms displaced from the equilibrium sites of the crystallineparameter Dxconst was equal 0.01 Å. Figure 1 shows the
structure, and eventually gives rise to residual permanentvariation with time of the numbers Nk , with kmax 5 3 (four
defects. The number of displaced atoms as a function ofgroups with time increments equalling Dt0 , 2Dt0 , 4Dt0 , and
time, Ndisp(t), and its asymptotic value provide a sensitive8Dt0 , respectively).
test for the accuracy and consistency of the calculation.The two following points are worth noting:
Figure 2 shows that function for a series of runs of the

— The basic premise of the multistep scheme is appar- same physical system (Natom 5 18000; Einit 5 500 eV),
ent in the graph. Most atoms are advanced with the largest where the number of allowed time groups was increased
increment allowed in this case, 8Dt0 , while consecutively progressively from one to four (kmax 5 0, ..., 3). The mini-
smaller fractions are advanced with the smaller time steps. mal dedisplacement used in the compilation of these func-
This is a dynamic process. Each of the numbers Nk for the tions was 0.643 Å. The one-group case, where all particles
smaller groups reaches a maximum, before decreasing and are advanced with the basic Dt0 throughout the computa-
fading away. In fact, the scheme automatically treats the tion, serves as a reference run for comparison. It is seen,
entire atom population with the time step structure appro- that the function Ndisp(t) is practically identical for all levels
priate to the designated accuracy. of approximation of the numerical scheme. In some longer

runs, not shown on the figure, it was found that the value— The main criterion for assigning atoms to time-
groups (Eq. (3)) is a ‘‘hard’’ one. Namely, every time an of Ndisp(t) obtained at t 5 1 ps remains unchanged as the

integration is carried out to t 5 2 ps, and thus represents,atom crosses a critical velocity, it jumps from one group
to another, causing a corresponding group shift among indeed, a consistent asymptotic value.

One of the crucial tests for the validity and accuracyits neighbors. This abrupt behavior, which is a natural
consequence of the criteria employed here, is seen in Fig. of dynamic calculations of closed physical systems, is the

conservation of total energy. Figure 3 shows the total en-1. It is possible to design ‘‘softer’’ criteria which will result
in smoother behavior of these functions. In any event, this ergy (per particle) as a function of time for the runs shown

in Fig. 2. The different approximations reproduce exactlybehavior does not influence the accuracy of the calculation.
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FIG. 4. The time dependence of the kinetic energy per atom for the
FIG. 2. The time dependence of the number of atoms displaced from run with Natom 5 18000 and Einit 5 500 eV. The different curves correspond

their original site by more than 0.643 Å, for the run with Natom 5 18000 to the successive approximations, going from kmax 5 0 (the reference
and Einit 5 500 eV. The different curves correspond to the successive case) to kmax 5 3. The dispersion of the kinetic energy from the reference
approximations, going from kmax 5 0 (the reference case) to kmax 5 3. case is about one-fourth of the corresponding dispersion in the total
Because of the great similarity between the curves, they are not individu- energy.
ally identified.

the same time dependence in the first 0.2 ps. This might
indeed be expected from the behavior of the functions Nk

for lower k, which peak at around 0.2 ps. The relative
incremental energy DE/Etot per synchronization time step
is around 4 3 1025 during that period. Following that,
there is a minor dispersion between the various runs, which
increases monotonically with the order of the approxima-
tion (i.e., with kmax). However, even for the coarsest ap-
proximation, the average DE/Etot is only 4 3 1026 per
synchronization time step.

Since one of the principal factors which determine an
atom’s time step is its velocity, we plot in Fig. 4 the corre-
sponding time evolution of the kinetic energy per particle.
Again one sees a dispersion between the different approxi-
mations, which reaches about 0.002 eV/particle at t 5 1
ps. This is very small compared to the total energy per
particle. It is not small when compared to the kinetic energy
itself. We note, however, that the entire behavior of the
kinetic energy is rather spurious in this type of calculation,
representing the effect of the finite size of the computed
system. This artificial maintaining of thermal velocities is,
in fact, what sets the limits on kmax in the present case.

FIG. 3. The time dependence of the total energy per atom for the Table I gives the CPU time spent on the various phases
run with Natom 5 18000 and Einit 5 500 eV. The different curves correspond of the calculations in the successive approximations, along
to the successive approximations, going from kmax 5 0 (the reference

with CPU time gain factors U obtained in each case. Thecase) to kmax 5 3. The integrated energy increment is about 1% for the
neighbor list figure quoted for the reference case corre-first 2000 basic time steps and less than 0.5% over the next 8000 basic

time steps. sponds to a full updating every 16 time steps (of 1 3 10216)
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TABLE I cade to be contained within the basic simulation domain
and to avoid unphysical self-interference due to the peri-The Actual Computation Times, in Seconds, of the First 0.12
odic boundary conditions. The detailed dependence ofps (1200 time steps) of the Natom 5 18000, Einit 5 500 eV case
Natom on Einit , and of the CPU time on both, may vary

Ref. kmax 5 1 kmax 5 2 kmax 5 3 with the specific problem. In general, both for the simple
and the multistep calculation of any problem, the CPU

Force calculation 17,077 8,780 4,570 2,450
time is simply proportional to Natom . Note, however, thatNeighbor list 443 94 94 94
the CPU gain factor may also increase with Natom sinceMain 150 150 150 150

Overhead — 76 58 30 a larger fraction of the additional atoms included in the
expanded problem may be treated with an increased maxi-

Total time 17,670 9,100 4,872 2,724 mal time step. Thus, one should expect a weaker overall
Gain factor (U) 1 1.94 3.63 6.49

dependence of the CPU time on Einit for the optimized
scheme.Note. The successive approximations, going from kmax 5 1 to kmax 5

3 are compared to the reference case. The gain factor U is the correspond- There is a limit on the CPU time gain which can, in
ing ratio of the total CPU times. The computations were carried out on principle, be achieved. When the modified (optimized)
a Silicon Graphics R4400 workstation. force calculation is reduced to the extent that its time

consumption is about equal to that of the unaffected seg-
ments of the computation, no further gain is obtained. At
this stage one must resort to parallel computing, in orderwith no ‘‘refreshing’’ in between. The ‘‘overhead’’ entry
to treat larger problems within a reasonable time. We noterepresents the additional computations which had to be
that the structure of the present scheme is inherently suit-carried out in implementing the optimizing scheme. It is
able for parallel computation.interesting to note, that to a good approximation, one has

in this case
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